A Student-t based filter for robust signal detection
نویسنده
چکیده
The search for gravitational-wave signals in detector data is often hampered by the fact that many data analysis methods are based on the theory of stationary Gaussian noise, while actual measurement data frequently exhibit clear departures from these assumptions. Deriving methods from models more closely reflecting the data’s properties promises to yield more sensitive procedures. The commonly used matched filter is such a detection method that may be derived via a Gaussian model. In this paper we propose a generalized matched filtering technique based on a Student-t distribution that is able to account for heavier-tailed noise and is robust against outliers in the data. On the technical side, it generalizes the matched-filter’s least-squares method to an iterative, or adaptive, variation. In a simplified Monte Carlo study we show that when applied to simulated signals buried in actual interferometer noise it leads to a higher detection rate than the usual (Gaussian) matched filter.
منابع مشابه
Performance Improvement of Radar Target Detection by Wavelet-based Denoising Methods
With progress in radar systems, a number of methods have been developed for signal processing and detection in radars. A number of modern radar signal processing methods use time-frequency transforms, especially the wavelet transform (WT) which is a well-known linear transform. The interference canceling is one of the most important applications of the wavelet transform. In Ad-hoc detection met...
متن کاملPerformance Improvement of Radar Target Detection by Wavelet-based Denoising Methods
With progress in radar systems, a number of methods have been developed for signal processing and detection in radars. A number of modern radar signal processing methods use time-frequency transforms, especially the wavelet transform (WT) which is a well-known linear transform. The interference canceling is one of the most important applications of the wavelet transform. In Ad-hoc detection met...
متن کاملA Novel Fault Detection and Classification Approach in Transmission Lines Based on Statistical Patterns
Symmetrical nature of mean of electrical signals during normal operating conditions is used in the fault detection task for dependable, robust, and simple fault detector implementation is presented in this work. Every fourth cycle of the instantaneous current signal, the mean is computed and carried into the next cycle to discover nonlinearities in the signal. A fault detection task is complete...
متن کاملDetection of Coastline Using Satellite Image-Processing Technique
Extended abstract 1- Introduction Coasts maintain their natural sustainability without human intervention and in spite of short-term changes, we are ultimately confronted with a coastal healthy environment, i.e. natural, rocky beaches, sandy beaches and so on. Today's use of remote sensing in most natural sciences is widespread. Due to the fact that fieldwork is costly and time-consuming, ...
متن کاملFace Detection with methods based on color by using Artificial Neural Network
The face Detection methodsis used in order to provide security. The mentioned methods problems are that it cannot be categorized because of the great differences and varieties in the face of individuals. In this paper, face Detection methods has been presented for overcoming upon these problems based on skin color datum. The researcher gathered a face database of 30 individuals consisting of ov...
متن کامل